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Studies of chemokine receptors (CKR) in natural killer- (NK-) cells have already been published, but only a few gave detailed
information on its differential expression on blood NK-cell subsets. We report on the expression of the inflammatory and
homeostatic CKR on normal blood CD56+low CD16+ and CD56+high CD16−/+low NK-cells. Conventional CD56+low and CD56+high
NK-cells present in the normal PB do express CKR for inflammatory cytokines, although with different patterns CD56+low NK-cells
are mainly CXCR1/CXCR2+ and CXCR3/CCR5−/+, whereas mostly CD56+high NK-cells are CXCR1/CXCR2− and CXCR3/CCR5+.
Both NK-cell subsets have variable CXCR4 expression and are CCR4− and CCR6−. The CKR repertoire of the CD56+low NK-cells
approaches to that of neutrophils, whereas the CKR repertoire of the CD56+high NK-cells mimics that of Th1+ T cells, suggesting
that these cells are prepared to migrate into inflamed tissues at different phases of the immune response. In addition, we describe
a subpopulation of NK-cells with intermediate levels of CD56 expression, which we named CD56+int NK-cells. These NK-cells are
CXCR3/CCR5+, they have intermediate levels of expression of CD16, CD62L, CD94, and CD122, and they are CD57− and CD158a−.
In view of their phenotypic features, we hypothesize that they correspond to a transitional stage, between the well-knownCD56+high

and CD56+low NK-cells populations.

1. Introduction

Natural killer- (NK-) cells were originally identified by their
natural ability to kill target cells and are known for a long
time as effector cells of the innate immune system, with
an important role in controlling several types of tumors
and infections [1]. In recent years, NK-cells have also been
recognized as regulatory cells, which are able to interact
with other cells of the immune system, such as dendritic
cells (DC), monocytes/macrophages, and T cells, thereby

influencing the innate and adaptive immune responses [2–
5]. The role of their interaction with neutrophils in shaping
the immune response is also being increasingly documented
[6, 7].

The cytotoxic activity of the NK-cells is controlled by the
balance between inhibitory and activating receptors, whose
ligands are self-Major Histocompatibility Complex (MHC)
class I molecules and molecules expressed on stressed, viral
infected, and tumor cells. They comprise, among others, the
killer cell immunoglobulin-like receptors (KIR), killer cell
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lectin type receptors (KLR), and natural cytotoxic receptors
(NCR) as well as immunoglobulin Fc receptors (FcR) and
complement receptors [8–10].

Meanwhile, the immunoregulatory properties of the NK-
cells are mediated, not only by cell-to-cell contact, but also by
the soluble factors they produce, which enable them to recruit
and to activate other immune cells.These include chemokines
(CK), such as MIP-1𝛼 (macrophage inflammatory proteins-
1 alpha, CCL3) and MIP-1𝛽 (CCL4), RANTES (regulated
activation, normal T cell expressed and secreted, CCL5), and
ATAC (activation-induced, T cell derived, and chemokine-
related cytokine, CXCL1). They also comprise cytokines,
for example, IFN-𝛾 (interferon-gamma) and TNF-𝛼 (tumor
necrosis factor alpha) and growth factors, such as GM-CSF
(granulocyte-macrophage colony-stimulating factor) [11, 12].

Using adhesion molecules and chemokine receptors
(CKR), NK-cells are able to circulate in the blood and to
distribute throughout the body, by homing into secondary
lymphoid organs (e.g., lymph nodes), localizing in specific
nonlymphoid organs (e.g., liver, placenta), andmigrating into
acute or chronic inflamed tissues, where they participate
in the immune responses [13–16]. In some organs, NK-
cells exhibit specific phenotypes and functions [17, 18], for
example, promoting decidualization of the endometrium,
embryo implantation and placenta development [19, 20], and
influencing the hematopoiesis [21, 22].

Two different subsets of mature CD56+ NK-cells have
been described in humans, based on the levels of CD56
and CD16 expression: CD56+low CD16+ and CD56+high

CD16−/+low NK-cells from now on designed CD56+high and
CD56+high, respectively [23, 24]. While the former clearly
predominates in the peripheral blood (PB), where they
represent around 90% of the circulating CD56+ NK-cells, the
latter are more represented in secondary lymphoid organs,
chronically inflamed tissues and placenta [13–16, 19, 20].

Apart from the different expression of CD16, the low
affinity receptor for IgG (Fc𝛾RIIIA) and CD56, the neural cell
adhesion molecule (NCAM), the conventional CD56+ NK-
cell subsets also differ in the expression of other adhesion,
homing, and costimulatorymolecules as well as on the reper-
toires of NCR, KIR and KLR, and receptors for cytokines,
chemokines, and growth factors [25–29]. In addition, these
NK-cell subsets exhibit distinct sialylated forms of CD43 and
posttranslational modifications of the P-selectin glycoprotein
ligand-1 (PSGL-1) [30, 31].

From the functional point of view, CD56+low NK-cells
are essentially cytotoxic, with a greater level of antibody
dependent cell mediated cytotoxicity (ADCC) [32], whereas
CD56+high NK-cells have a high proliferative response to low
doses of interleukin- (IL-) 2 (IL-2) and C-kit ligand [33]. In
addition, the latter display a more important immunomodu-
latory role associatedwith cytokine production in response to
IL-2 and monokines [33]. More recently it became apparent
that upon target cell recognition, CD56+low NK-cells are
more prominent cytokine and chemokine producers than
CD56+high NK-cells [34]. These diverse functional properties
would suggest that CD56+low and CD56+high NK-cells could

be naturally prepared to act in different sites and at different
phases of the immune response.

The exact relationship between these NK-cell subsets still
remains unclear. Some studies have shown that bone marrow
progenitor cells give rise to CD56+high or CD56+low NK-
cells depending on being cultured in the presence of IL-15
alone or in combination with IL-21, respectively [35, 36].
However, more recent data would favor a possiblematuration
relationship between these NK-cell subsets and suggest that
CD56+low NK-cells originate from CD56+high NK-cells [37–
42].

Chemokines are small proteins that control a number
of biological activities, including cell development, differ-
entiation, tissue distribution, and function [43]. They act
by binding chemokine receptors (CKR), a family of seven-
transmembrane proteins that are classified by structure
according to the number and spacing of conserved cysteines
into fourmajor groups given the namesCXCR,CCR,CX3CR,
and XCR to which four groups of CK correspond: CXCL,
CCL, CL, and CX3CL [44]. In addition, CXCL chemokines
have been further subclassified into glutamic acid-leucine-
arginine tripeptide (ELR) positive or negative, based on the
presence or absence of the ELR motif N-terminal to the
first cysteine. From a functional point of view, two distinct
types of CK have been considered: inflammatory/inducible
CK, which are regulated by proinflammatory stimuli and
dictate migration to the inflamed tissues and homeo-
static/constitutive CK, which are responsible for the homing
of the immune cells to the lymphoid organs and tissues.
Similarly, two distinct groups of CKR have been described:
those that interact mainly with inflammatory/inducible CK
and have overlapping specificities and those that are relatively
specific for homeostatic/constitutive CK [43, 44].

To the best of our knowledge only a few studies analyzed
in detail the CKR repertoire on CD56+low and CD56+high
NK-cells and the results obtained were somewhat diver-
gent [45, 46]. For instance, Campbell et al. have found
that CD56+/CD16+ (primarily CD56+low) NK-cells uniformly
express high levels of CXCR1, CXCR4, and CX3CR1 and low
levels of CXCR2 and CXCR3 but no CCR1–6, CCR9, CXCR5,
and CXCR6; they also found that CD56+/CD16− (primarily
CD56+high) NK-cells do express CXCR3, CXCR4, CCR5,
and very low levels of CX3CR1, but no CXCR1, CXCR2,
CXCR5, CCR1–4, 6, and 9 [45]. In contrast, Berahovich et al.
observed that NK-cells are CXCR1+, CXCR3+, and CXCR4+
and contain subsets expressing CCR1, CCR4, CCR5, CCR6,
CCR9, CXCR5, and CXCR6 [46]; according to their work,
with the exception of CCR4, these CKR are expressed at
higher percentages by CD56+high NK-cells [46]. Additionally,
both authors have found CCR7 to be restricted to CD56+high
NK-cells, which has been proved to regulate its selective
homing into the lymph nodes (LN) [47, 48], where these
cells establish the link between innate and adaptive immunity
[47, 48].

We have previously characterized the immunopheno-
type of blood CD56+low and CD56+high NK-cells [29]. In
order to better understand the migration pathways and
cell-interactions of these NK-cell subsets and to establish
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the normal reference patterns for the study of the NK-cell
lymphoproliferative disorders, we decided to investigate the
expression of a number of CKR on these NK-cell subsets. At
some point in our study, we found that blood CD56+ NK-
cells include a minor population of CXCR3/CCR5+ NK-cells
whose levels of CD56 expression are intermediate between
those observed on CD56+low and CD56+high NK-cells, most
of which are CD16+. These cells, from now on referred
to as CD56+ int NK-cells, fail to display CD57 and KIR,
and they have intermediate levels of CD62L, CD94, and
CD122 expression. Based on the results presented herein
and on the published data, we discuss the migration routes
of the conventional CD56+high and CD56+low NK-cells and
their relevance for the success of the immune response and
hypothesize that CD56+ int NK-cells probably represent a
transitional NK-cell state.

2. Material and Methods

2.1. Subjects. We first analyzed by flow cytometry the expres-
sion of a number of CKR on the CD56+ NK-cells in the PB
of 15 adult healthy individuals (blood donors), 9 males and
6 females, aged from 19 to 54 years (median age of 38 years).
After suspecting the existence of a subpopulation of CD56+ int
NK-cells, these cells were further characterized using another
group of 13 adult healthy individuals (blood donors), 8 males
and 5 females, aged from 20 to 64 years (median age of 40
years).

2.2. Ethical Statement. This studywas approved by the Ethical
Committee as part of a research project aimed to characterize
the CKR on normal and neoplastic T cells and NK-cells in
order to better understand the biology of the T cell and
NK-cell lymphoproliferative disorders. All individuals gave
informed consent to participate in the study.

2.3. Flow Cytometry Studies. Immunophenotyping was per-
formed using a whole blood stain-lyse-and-then-wash direct
immunofluorescence technique using FACS lysing solution
(Becton Dickinson, San José, CA) (BD) for erythrocyte
lysis and cell fixation and four-color stainings with mono-
clonal antibodies (mAbs) conjugated with fluorescein isoth-
iocyanate (FITC), phycoerythrin (PE), PE-Cyanine 5 (PC5)
or peridinin chlorophyll protein (PerCP), and allophyco-
cyanin (APC). These were purchased to BD, Pharmingen
(PH; San Diego, CA), Beckman Coulter (BC; Miami, FL),
Immunotech (IOT; Marseille, France), and CLB (Amster-
dam, Netherlands). Appropriate fluorochrome-conjugated
isotype matched mAbs were used as negative controls.

In order to characterize the CKR expression on the
conventional CD56+low andCD56+high NK-cell subsets, APC-
conjugated anti-CD3 (BD; mouse IgG1,𝜅; clone SK7), PC5-
conjugated anti-CD56 (IOT; mouse IgG1,𝜅; clone N901/
NKH-1), and FITC-conjugated anti-CD16 (IOT; mouse
IgG1,𝜅; clone 3G8) mAbs were used in combination with
PE-conjugated mAbs directed against the following CKR
(PH): CXCR1 (CD181) (mouse IgG2b,𝜅; clone 5A12), CXCR2
(CD182) (mouse IgG1,𝜅; clone 6C6), CXCR3 (CD183) (mouse

IgG1,𝜅; clone 1C6), CCR4 (CD194) (mouse IgG1,𝜅; clone
1G1), CCR5 (CD195) (mouse IgG2a,𝜅; clone 2D7/CCR5), and
CCR6 (CD196) (mouse IgG1,𝜅; clone 11A9).

Subsequently, CD56+ int NK-cells (which, in most of the
normal PB samples, cannot be distinguished from the con-
ventional CD56+low or CD56+high NK-cells using the staining
protocol mentioned above) were further characterized using
APC-conjugated anti-CD3, PC5-conjugated anti-CD56, PE-
conjugated anti-CXCR3 + PE-conjugated anti-CCR5, and
one of the following FITC-conjugated mAbs directed against
these molecules: anti-CD16 (IOT; mouse IgG1,𝜅; clone 3G8),
anti-CD57 (BD; mouse IgM,𝜅; clone HNK-1), anti-CD62L
(BD; mouse IgG2a,𝜅; clone SK11), anti-CD94 (PH; mouse
IgG1,𝜅; clone HP-3D9), anti-CD122 (CLB; mouse IgG2a,𝜅;
clone MIK-b1), and anti-CD158a (BD; mouse IgM,𝜅; clone
HP-3E4).

Data acquisition was carried out in a FACSCalibur flow
cytometer (BD) equipped with a 15mW air-cooled 488 nm
argon ion laser and a 625 nm neon diode laser, using the
CellQUEST software (BD). Information on a minimum of
2 × 105 events was acquired and stored as FCS 2.0 data files
for each staining. For data analysis the Paint-a-Gate PRO
(BD) and the Infinicyt (Cytognos, Salamanca, Spain) software
programs were used.

Using the first staining protocol, NK-cells were first
gated based on their CD3−/CD56+ phenotype; then, the
conventional CD56+low and CD56+high NK-cell subsets were
selected based on their levels of CD56 expression and on their
differential positivity for CD16 and separately analyzed for
the expression of CXCR1, CXCR2, CXCR3, CCR4, CCR5, and
CCR6. Using the second staining protocol, in which the anti-
CXCR3 and CCR5 mAbs used have the same fluorochrome,
we were able to distinguish three populations of CD56+ NK-
cells: CD56+low CXCR3/CCR5−, CD56+ int CXCR3/CR5+, and
CD56+high CXCR3/CR5+. These were separately analyzed for
the expression of CD16, CD56, CD57, CD62L, CD94, CD158a,
and CD122.

The percentage of positive cells, the mean fluorescence
intensity (MFI, expressed as arbitrary relative linear units
scaled from 0 to 10,000), and the coefficient of variation of
theMFI (CV, expressed as percentage) were recorded for each
molecule tested.

2.4. Statistical Analysis. For all quantitative variables under
study, mean, standard deviation, median, and range values
were calculated. The statistical significance of the differences
observed between groups was evaluated using the Mann-
Whitney𝑈-test (SPSS 10.0, SPSS, Chicago, IL, USA). 𝑃 values
less than 0.05 were considered to be associated with statistical
significance.

3. Results

3.1. Chemokine Receptors on Blood CD56+low and CD56+high

NK-Cells. Conventional CD56+low and CD56+high NK-cells
present in the normal PB have different CKR repertoires
(Figure 1 and Table 1).
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Figure 1: Representative dot plots illustrating the expression of different chemokine receptors (CKR) on the conventional CD56+low (red
dots) and CD56+high (blue dots) NK-cell subsets present in the normal peripheral blood (PB). In order to obtain the dot plots showed in this
figure, PB cells were stained with APC-conjugated anti-CD3, PC5-conjugated anti-CD56, PE-conjugated anti-CKR, and FITC-conjugated
anti-CD16 monoclonal antibodies. Dot plots in the first row illustrate the strategy of gating. Using the CD3/CD56 dot plot, CD56+ NK-cells
were first identified based on their CD3−/CD56+ phenotype (black dots), comparatively to T (CD3+) and B (CD3−CD56−) cells (gray dots).
Then, after gating for CD56+ NK-cells (first CD56/CD16 dot plot), the CD56+low (red dots) and CD56+high (blue dots) NK-cell populations
were identified based on their typical patterns of CD56 andCD16 expression (secondCD56/CD16 dot plot). Finally, theseNK-cell populations
were analyzed for the expression of the CKR (CKR/CD56 dot plots). The numbers above the CD56+low and CD56+high NK-cells inside the
CKR/CD56 dot plots indicate the percentage of cells staining positively for the correspondent CKR and were obtained after gating separately
for each NK-cell population (CKR/CD56 dot plots gated for CD56+low and CD56+high NK-cells are not shown, for simplicity).

3.1.1. Chemokine Receptors on Conventional CD56+low NK-
Cells. Most CD56+low NK-cells are CXCR1/CXCR2+; that is,
the majority expresses high levels of CXCR1 (93.0 ± 4.5%)
and CXCR2 (91.9 ± 3.4%), whose ligands are CXCL8 (IL-
8) and other ELR motif containing chemokines involved in
inflammation and angiogenesis [49] (Table 1 and Figure 1). In
addition, these NK-cells are CXCR3/CCR5−/+, which means
that a variable proportion of them have low levels of CXCR3
and/or CCR5 (15.6 ± 11.1% and 13.3 ± 8.8%, resp.) (Table 1
and Figure 1). CXCR3 binds IFN-𝛾 inducible cytokines, such
as CXCL9 (monokine induced by gamma-interferon, MIG),
CXCL10 (interferon-induced protein of 10 kD, IP-10), and
CXCL11 (interferon-inducible T cell alpha chemoattractant,

I-TAC) andmediates Ca++mobilization and chemotaxis [50–
52]. On the other hand, CCR5 has affinity to CCL3 (MIP-
1𝛼), CCL4 (MIP-1𝛽), CCL5 (RANTES), andCCL8 (monocyte
chemotactic protein-2, MCP-2) [53, 54].

Concerning the expression of constitutive/homeostatic
CKR and the fraction of CD56+low NK-cells that expresses
CXCR4, a CKR present on most hematopoietic cell types
that binds to CXCL12 (stromal cell derived factor type 1,
SDF-1) [55, 56] and has been shown to play a pivotal role
in hematopoiesis [57] is variable (21.8 ± 8.7%) (Table 1 and
Figure 1). In contrast, CCR4 is expressed in only a very small
percentage of the CD56+low NK-cells (0.8 ± 0.4%) (Table 1
and Figure 1). This CKR has been reported to be a marker for
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Table 1: Chemokine receptor expression on the well-known CD56+low and CD56+high NK-cells observed in blood, as identified based only
on the levels of CD56 and CD16 expression.

CD56+low NK-cells CD56+high NK-cells 𝑃 values

CXCR1
% (+) cells 93.0 ± 4.5 (85.3–99.6) 4.0 ± 3.6 (0.0–12.1) <0.001

MFI 100.1 ± 19.4 (79.3–140.9) 7.0 ± 3.1 (2.0–14.5) <0.001
CV 67.1 ± 23.6 (51.5–145.3) 156.8 ± 76.2 (75.3–329.7) <0.001

CXCR2
% (+) cells 91.9 ± 3.4 (86.1–97.0) 2.0 ± 1.4 (0.0–4.7) <0.001

MFI 165.7 ± 68.6 (66.9–264.1) 3.6 ± 1.5 (2.2–6.8) <0.001
CV 64.1 ± 8.7 (48.5–78.6) 218.1 ± 131.4 (82.7–568.9) <0.001

CXCR3
% (+) cells 15.6 ± 11.1 (4.8–40.1) 97.0 ± 2.5 (92.5–99.6) <0.001

MFI 15.5 ± 10.7 (6.5–41.6) 94.5 ± 55.1 (48.7–231.1) <0.001
CV 209.8 ± 62.9 (145.1–403.4) 62.7 ± 8.1 (49.6–75.3) <0.001

CXCR4
% (+) cells 21.8 ± 8.7 (8.4–43.5) 11.4 ± 4.6 (5.5–21.4) <0.001

MFI 11.8 ± 3.9 (5.3–20.9) 7.8 ± 3.1 (3.6–14.0) n.s.
CV 308.5 ± 89.8 (182.6–492.8) 318.6 ± 98.8 (184.4–581.1) n.s.

CCR4
% (+) cells 0.8 ± 0.4 (0.2–1.5) 3.3 ± 2.9 (0.3–9.7) <0.05

MFI 2.2 ± 0.6 (1.3–3.0) 3.1 ± 1.1 (1.5–4.4) n.s.
CV 393.3 ± 195.1 (138.1–677.6) 118.7 ± 107.2 (59.1–417.3) 0.01

CCR5
% (+) cells 13.3 ± 8.8 (2.8–33.2) 50.0 ± 15.3 (24.8–78.5) <0.001

MFI 11.1 ± 6.0 (3.5–20.6) 27.8 ± 18.6 (7.7–79.9) <0.01
CV 353.5 ± 92.8 (194.8–492.5) 133.9 ± 28.1 (96.7–192.4) <0.001

CCR6
% (+) cells 0.6 ± 0.4 (0.1–1.3) 0.9 ± 1.2 (0.0–3.0) n.s.

MFI 2.3 ± 0.7 (1.5–3.9) 2.1 ± 0.8 (1.4–4.0) n.s.
CV 214.7 ± 126.1 (61.4–432.8) 106.7 ± 73.5 (46.2–272.3) n.s.

Data were obtained using the gating and analysis strategies described in Figure 1, where representative dot plots of these two conventional NK-cell subsets are
presented.
Results are expressed as mean ± standard deviation (minimum–maximum) of the percentage of cells expressing each of the chemokine receptors analyzed
within each CD56+ NK-cell population as well as mean ± standard deviation (minimum–maximum) of the mean fluorescence intensity (MFI) and coefficient
of variation (CV) of expression.
n.s.: not statistically significant.

T helper 2 (Th2) lymphocytes [58] and promotes homing of
memory T cells to inflamed skin [59] by means of interaction
with CCL17 (thymus and activation-regulated chemokine,
TARC) and CCL22 (macrophage-derived chemokine, MDC)
[60, 61]. Similar results were obtained for CCR6, which
is expressed in only 0.6 ± 0.4% of the CD56+low NK-cells
(Table 1). This CKR mediates responsiveness of memory
T cells to CCL3 (MIP-1𝛼) [62] and CCL20 (liver- and
activation-regulated chemokine, LARC) [63] and has also
been implicated in the homing of Langerhans’ cells to the
epidermis [64].

3.1.2. Chemokine Receptors on Conventional CD56+high NK-
Cells. In contrast to CD56+low NK-cells, the majority of the
CD56+high NK-cells are CXCR1/CXCR2− and CXCR3+; that
is, most of CD56+high NK-cells express high levels of CXCR3
(96.9 ± 2.5%) whereas only a few are CXCR1+ (4.0 ± 3.6%)
or CXCR2+ (2.0 ± 1.4%), and a large fraction of them (50.0 ±
15.3%) is CCR5+ (Table 1 and Figure 1).

Constitutive/homeostatic CKR are also present in
CD56+high NK-cells, with a variable fraction of them ex-
pressing CXCR4 (11.4 ± 4.6%) and only a few being CCR4+
(3.3 ± 2.9%) and CCR6+ (0.9 ± 1.2%, resp.) (Table 1 and
Figure 1).

3.2. Identification of a New CD56+𝑖𝑛𝑡 NK-Cell Population
in the Peripheral Blood. When analyzing the conventional
CD56+ NK-cell subsets, we observed that the percentage of
CD56+low NK-cells staining for CCR5 correlated positively
with the percentage ofCD56+low NK-cells staining forCXCR3
(𝑟 = 0.656; 𝑃 = 0.01). In addition, we found that CCR5+
and CXCR+ CD56+low NK-cells had higher levels of CD56
and lower levels of CD16, as compared to CCR5− (𝑃 =
0.001 and 𝑃 = 0.05, resp.) and CXCR3− (𝑃 = 0.003 and
𝑃 = 0.002, resp.) CD56+low counterparts. These observations
allow us to investigate if CD56+low cells expressing CCR5
and/or CXCR3 could represent a specific stage in NK-
cell differentiation. In accordance, using another staining
protocol in which anti-CXCR3 and anti-CCR5 mAbs had the
same fluorochrome, we were able to identify three NK-cell
populations in the normal PB, based on the expression of
CD56, CD16, and the chemokine receptors CXCR3 and/or
CCR5 (Figure 2): CD56+low CD16+ CCR5/CXCR3− (or sim-
ply CD56+low), CD56+ int CD16+/− CCR5/CXCR3+ (or simply
CD56+ int), and CD56+high CD16−/+low CCR5/CXCR3+ (or
simply CD56+high) NK-cells.

In the normal PB, CD56+low NK-cells correspond to the
majority (mean of 90 ± 4%) of CD56+ NK-cells, whereas the



6 Journal of Immunology Research
CD

56
 P

C5

CD
56

 P
C5

CD
56

 P
C5

CD
56

 P
C5

CD16 FITC CD16 FITC CD57 FITC

CD62L FITC

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

CCR5 + CXCR3 PE
CC

R5
+

CX
CR

3
PE

CD
56

 P
C5

CD
56

 P
C5

CD
56

 P
C5

CD94 FITC CD122 FITC CD158a FITC

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

(a)

CD3 APC CD56 PC5 CD16 FITC

CD57 FITC CD62L FITC

CD94 FITC CD122 FITC CD158a FITC

CCR5 + CXCR3 PE

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

(b)

Figure 2: Representative dot plots (a) and histograms (b) illustrating the expression of the CD3, CD16, CD56, CD57, CD62L, CD94, CD122,
and CD158a molecules on CD56+low CXCR3/CCR5− (red dots), CD56+ int CXCR3/CCR5+ (green dots), and CD56+high CXCR3/CCR5+
(blue dots) NK-cells in normal peripheral blood (PB). In order to obtain the dot plots showed in this figure, PB cells were stained with
APC-conjugated anti-CD3, PC5-conjugated anti-CD56, PE-conjugated anti-CXCR3 + PE-conjugated anti-CCR5, and FITC-conjugated
monoclonal antibodies against CD16, CD57, CD62L, CD94, CD122, or CD158a molecules. Total CD56+ cells were gated using the strategy
illustrated in Figure 1. Then, using the CD56/CCR5 + CXCR3 dot plot (first dot plot), three different CD56+ NK-cell populations were
identified based on the levels of expression of CD56 andCXCR3/CCR5: CD56+low CCR5/CXCR3− (red dots), CD56+ int CCR5/CXCR3+ (green
dots), and CD56+high CCR5/CXCR3+ (blue dots). As it can be seen in the remaining dot plots and histograms, these NK-cell populations differ
on the expression of several cell surface molecules. The percentage of cells staining positively for each molecule analyzed, as well as the mean
fluorescence intensity of antigen expression and its coefficient of variation, was calculated after gating separately for each NK-cell population
and is shown in Table 1 (data is not shown in the figure, for simplicity).
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CD56+ int and CD56+high NK-cells are minimally represented
(mean of 6 ± 4% and 4 ± 2%, resp.) (Table 2).

Despite representing a minor NK-cell population inmost
normal PB samples, CD56+ int NK-cells are largely expanded
in some patients with chronic lymphoproliferative disorders
of NK-cells (CLPD-NK) (Figure 3).

No differences were observed between these three NK-
cell subsets concerning both the cell size and complexity, as
evaluated by the forward (FSC) and side light scatter (SSC),
respectively, except for a slightly larger size of CD56+high
NK-cells (Table 2). Nonetheless, statistically significant dif-
ferences were found concerning the expression of CD56 and
CD16 (Figure 2 and Table 3) as well as of the other adhesion
molecules and homing, cytokine, and killer cell receptors
analyzed (Figure 2 and Table 4).

3.2.1. Phenotypic Characterization of Blood CD56+𝑖𝑛𝑡 NK-
Cells. CD56+ int NK-cells do express CD56 at levels that
are intermediate between those observed on CD56+low and
CD56+high NK-cells (MFI of 615± 149, 466± 108, and 2926±
578, resp.) (Figure 2 andTable 3).They also have intermediate
percentages of CD16+ cells (64.6 ± 23.6%), as compared to
CD56+low and CD56+high NK-cells (99.9 ± 0.1% and 28.7 ±
9.9%, resp.). In addition, the levels of CD16 expression (MFI
of 84 ± 55) were in between those observed on CD56+low and
CD56+high NK-cells (MFI of 226 ± 107 and 47 ± 18, resp.).

These three CD56+ NK-cell subsets also differ in the
expression of other molecules (Figure 2 and Table 4).

Concerning the KLR, only a fraction of CD56+low (47.8 ±
13.7%) expresses dimly CD94, whereas nearly all CD56+ int

(91.4 ± 6.0%) and CD56+high (98.3 ± 1.5%) are CD94+
(Figure 2 and Table 4). Curiously, the levels of CD94 expres-
sion on CD56+ int NK-cells are in between those observed on
CD56+low and CD56+high NK-cells (MFI of 129 ± 34, 71 ± 18,
and 228 ± 34, resp.).

With respect to the expression of KIR, an opposite pattern
is observed. Indeed, a variable fraction of CD56+low NK-
cells is CD158a+ (38.9 ± 30.0%), in contrast to that found
in CD56+ int and CD56+high NK-cells, which are basically
CD158a− (mean percentage of CD158a− cells of 9.9 ± 9.0%
and 4.1 ± 4.9%, resp.) (Figure 2 and Table 4).

Regarding cell adhesion molecules, the percentage of
CD62L+ cells is significantly lower among CD56+low (35.4 ±
20.4%), as compared to CD56+high NK-cells (97.3 ± 2.4%),
intermediate values being observed in the CD56+ int NK-cells
(77.3 ± 19.0%). Similar results were obtained for the levels of
CD62L expression (MFI of 49 ± 9, 119 ± 21, and 139 ± 30,
resp.). In addition, a large fraction of CD56+low NK-cells
(66.3 ± 15.6%) expresses variably and heterogeneously the
CD57 oligosaccharide, whereas most CD56+ int NK-cells fail
to express this molecule and CD56+high NK-cells are virtually
CD57− (mean%of CD57+ cells of 15.3±13.7%and 1.3±1.4%,
resp.). Once again, the levels of CD57 expression onCD56+ int
NK-cells (MFI of 355 ± 166) were in between those observed
onCD56+low (MFI of 700±436) andCD56+high NK-cells (MFI
of 165 ± 219).

The low affinity receptor for IL-2 and CD122, which is
present in virtually all NK-cells, also exhibit intermediate
levels on CD56+ int cells (MFI of 77 ± 20), as compared to
CD56+low (MFI of 46±11) and to CD56+high (MFI of 117±32)
NK-cells (Figure 2 and Table 4).

4. Discussion

In the present study we show that CD56+low and CD56+high
NK-cells that circulate in the normal blood have typical
and quite different patterns of expression of receptors for
inflammatory chemokines. At the same time, we identify and
describe a subpopulation of CD56+ int NK-cells that could
represent a transitional stage in between the conventional
NK-cell subsets referred to above, based on their intermediate
levels of CD56 and CD16 expression and on their patterns of
chemokine (CXCR3, CCR5), cytokine (CD122), and killer cell
(CD94, CD158a) receptors and adhesion molecules (CD62L,
CD57).

Differences on the CKR repertoires make the NK-cell
subsets naturally able to circulate in the blood, to home
into secondary lymphoid organs, or to migrate into inflamed
tissues, in different circumstances and with different partners
(Figure 4), in response to constitutive and inflammatory
chemokines (Table 5).

In accordance, the majority of CD56+high NK-cells are
CXCR3/CCR5+, a pattern of CKR expression that is typically
observed in Th1 cells [65], while CD56+low NK-cells do
express CXCR1 and CXCR2, the only CKR specific for the
ELR+ CXCL chemokines involved in inflammation, thus
mimicking neutrophils [66, 67]. In addition, both NK-cell
subsets have variable levels of CXCR4 and virtually no CCR4
and CCR6 expression.

CD56+high NK-cells and Th1 cells, the primary cell pop-
ulations responsible for IL-2, IFN-𝛾, and TNF-𝛼 production
in response to IL-2 or certain monokines, such as IL-12 and
IL-15, are attracted together to chronically inflamed tissues
in response to CCR5 (MIP-1𝛼, MIP-1𝛽, RANTES, and MCP-
2) and CXCR3 (MIG, IP-10, and I-TAC) chemokine ligands,
where they orchestrate the adaptive immune response. Some
of these CK, such as RANTES and MIP-1𝛼, also attract
proinflammatory CD14+low CD16+ monocytes, by acting as
ligands for CCR1 and CCR4, as well as for CCR5 [68].

In agreement, CD56+high NK-cells accumulate within
Th1-type chronic inflammatory lesions in a wide variety of
pathological conditions such as rheumatoid arthritis [69],
psoriasis [70], sarcoidosis [71], and allograft rejection [72]
as well as in sites of intracellular bacterial infections [73],
chronic viral infections [74], and tumors [75]. Inside the
inflamed tissues and imbibed in the appropriate monokine
environment, CD56+high NK-cells are able to engage with
monocytes in a reciprocal fashion [76], thereby amplifying
the inflammatory response and having important antitumor
and antiviral effects. In the LN, they can induce the matu-
ration of DC via IFN-𝛾 and TNF-𝛼 release and/or cell-cell
contact-dependent mechanisms [2, 3], in that way shaping
the subsequent immune response. Moreover, activated NK-
cells can kill immature myeloid DC, which have insufficient
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Table 4: CD57, CD62L, CD94, CD122, and CD158a expression on peripheral blood CD56+low CCR5/CXCR3−, CD56+int CCR5/CXCR3+, and
CD56+high CCR5/CXCR3+ NK-cell subsets.

A B C 𝑃 values
CD56+low CCR5/CXCR3− CD56+int CCR5/CXCR3+ CD56+high CCR5/CXCR3+ A versus B B versus C A versus C

CD57
% (+) cells 66.3 ± 15.6 (36.7–87.4) 15.3 ± 13.7 (1.7–42.7) 1.3 ± 1.4 (0.0–4.3) <0.001 <0.001 <0.001

MFI 700 ± 436 (217–1557) 355 ± 166 (150–703) 165 ± 219 (9–574) 0.018 0.015 <0.001
CV 114 ± 34 (77–194) 130 ± 35 (80–205) 85 ± 54 (6–155) n.s. n.s. n.s.

CD62L
% (+) cells 35.4 ± 20.4 (9.6–73.5) 77.3 ± 19.0 (41.9–95.7) 97.3 ± 2.4 (92.8–100.0) <0.001 <0.001 <0.001

MFI 49 ± 9 (38–65) 119 ± 21 (77–147) 139 ± 30 (91–172) <0.001 0.057 <0.001
CV 83 ± 11 (72–109) 56 ± 7 (46–71) 47 ± 9 (35–69) <0.001 0.010 <0.001

CD94
% (+) cells 47.8 ± 13.7 (34.1–74.1) 91.4 ± 6.0 (79.2–98.4) 98.3 ± 1.5 (94.5–100.0) <0.001 <0.001 <0.001

MFI 71 ± 18 (50–106) 129 ± 34 (77–211) 228 ± 34 (175–286) <0.001 <0.001 <0.001
CV 56 ± 7 (44–69) 56 ± 11 (41–85) 47 ± 8 (31–56) n.s. 0.039 0.039

CD122
% (+) cells 100.0 ± 0.0 (100.0-100.0) 100.0 ± 0.0 (100.0-100.0) 100.0 ± 0.0 (100.0-100.0) n.s. n.s. n.s.

MFI 46 ± 11 (31–63) 77 ± 20 (49–107) 117 ± 32 (79–182) <0.001 0.001 <0.001
CV 50 ± 12 (35–72) 56 ± 9 (43–79) 46 ± 5 (34–54) n.s. <0.001 <0.001

CD158a
% (+) cells 38.9 ± 30.0 (7.9–92.9) 9.9 ± 9.0 (0.7–30.0) 4.1 ± 4.9 (0.1–19.3) 0.001 0.030 <0.001

MFI 30 ± 8 (18–42) 35 ± 11 (22–57) 41 ± 13 (20–68) n.s. n.s. n.s.
CV 61 ± 21 (27–98) 63 ± 20 (31–96) 69 ± 29 (35–126) n.s. n.s. n.s.

Data were obtained using the gating and analysis strategies described in Figure 2, where representative dot plots of these three NK-cell subsets are presented.
Results are expressed as mean ± standard deviation (minimum–maximum) of the percentage of positive (+) cells within each CD56+ NK-cell population,
and as the mean fluorescence intensity (MFI) and coefficient of variation (CV) of CD57, CD62L, CD94, CD122, and CD158a expression in cells that stained
positively for these antigens.
n.s.: not statistically significant.

amounts ofMHCmolecules to activate T cells properly [2, 3].
In addition,CD56+high NK-cells also predominate in placenta
[77], where they are involved in maternal-fetal tolerance [78,
79].

In contrast, CD56+low NK-cells, which are essentially
cytotoxic, and neutrophils, which are phagocytic cells by
excellence, predominate in the PB and are equipped with
the CXCR1 and CXCR2 chemokine receptors, making them
able to comigrate into sites of acute inflammation in response
to IL-8 and other ELR motif containing chemokines and
to participate in the earliest phase of the innate immune
response. As for the neutrophils, migration of CD56+low NK-
cells to inflamed tissues also depends on the interaction of
different forms of PSGL-1 expressed on their membrane with
the selectin molecules expressed on endothelial cells [31].
Curiously, cytotoxic T lymphocytes (CTL) have also been
reported to express CXCR1 [80] and PSGL-1 [81].

Normally, both neutrophils, which are able to neutralize
efficiently the extracellular pathogens, after opsonization by
antibodies, using Fc receptors for IgG and IgA and CD56+low
NK-cells, whichmediate antibody dependent cell cytotoxicity
via Fc𝛾RIIIa (CD16), circulate in the blood. In that sense,
it can be hypothesized that these cells are candidates to
establish a bridge between the innate immune response and
the antibody mediated adaptive immune response. Evidence
is being accumulated in the last years for a cross-talk
between neutrophils and NK-cells [6, 7]. For instance, NK-
cells promote neutrophil recruitment to the inflamed tissues
and several NK-cell derived cytokines and growth factors,
such as GM-CSF, IFN-𝛾, and TNF-𝛼, act by enhancing

neutrophil survival and bymodulating cell surface expression
of complement and Fc receptors in neutrophils [82–84]. On
the other hand, neutrophils can stimulate the production of
IFN-𝛾 by NK-cells [84].

The other anatomical sites in which CD56+low NK-
cells and neutrophils might be concomitantly present to
modulate each other’s activity and its contribution to dis-
ease are not completely elucidated. Normal liver contains
mainly CD56+low NK-cells, but these cells are different from
the CD56+low NK-cells that circulate in the blood [85].
In addition, CD56+low NK-cells also infiltrate the liver of
patients with primary biliary cirrhosis, an antibodymediated
autoimmune disease, following the CXCR1/IL-8 axis [85];
curiously, hepatic infiltration by neutrophils is also found
in these patients [86]. Moreover, CD56+low NK-cells and
neutrophils colocalize in the skin of patients with Sweet’s
syndrome, an acute febrile neutrophilic dermatosis that can
follow viral infections, autoimmune diseases, and hemato-
logic malignancies [84].

Also of note, in this study we confirm previous obser-
vations about the lack of expression on both CD56+low and
CD56+high NK-cells of other CKR involved in homing to
nonlymphoid organs and tissues including CCR4 (skin and
lung), CCR6 (intestine and liver), CCR9 (small intestine),
and CCR10 (skin) [45, 87]. This suggests that, unlike mem-
ory/effector T cells, CD56+ NK-cells may not be divided into
cutaneous versus mucosal/intestinal-homing compartments,
based on CKR expression [58, 88, 89].

Of special interest is also the identification of a new popu-
lation ofNK-cells expressing intermediate levels of CD56 that
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Figure 3: Illustrative dot plots showing the expression of the CXCR1, CXCR2, CXCR3, and CCR5 chemokine receptors (CKR) in normal
peripheral blood (PB) (a), where only CD56+low (red dots) and CD56+high (blue dots) are observed, and in the PB of a patient with a chronic
lymphoproliferative disorder of NK-cells (CLPD-NK) (b), exhibiting a transitional CD56+ int phenotype (green dots); other lymphocytes are
shown in gray. In order to obtain the dot plots showed in this figure, the PB cells were stainedwithAPC-conjugated anti-CD3, PC5-conjugated
anti-CD56, PE-conjugated anti-CKR (CXCR1, CXCR2,CXCR3, orCCR5), and FITC-conjugated anti-CD16monoclonal antibodies. As shown
in (a), in the normal PB most CD56+low NK-cells are CXCR1+ and CXCR2+, whereas only a very small fraction of cells stains positively for
CXCR3 and/or CCR5; in contrast, most CD56+high NK-cells are CXCR3+ whereas CCR5 is expressed in only a fraction and CXCR1 and
CXCR2 are virtually negative. As it can be seen in (b), the expanded NK-cells from this patient, which have relatively high levels of CD56
expression, are CD16+ and they express the CXCR1, CXCR2, CXCR3, and CCR5 molecules in a considerable fraction of cells.
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Figure 4: Diagram illustrating the complex relationship established between NK-cells and the other cells of the innate-dendritic cells
(DC), monocytes, macrophages, neutrophils, and adaptive (T cells) immune system, whose homing to lymphoid organs and recruitment to
inflamed tissues aremediated by the interaction of homeostatic chemokines constitutively expressed on locally resident cells and inflammatory
chemokines, with the correspondent chemokine receptors. CCR7 expression onCD56+high NK-cells,matureDC, and näıve T cells allows these
cells tomigrate into the lymph nodes, in response to CCL19 (ELC) andCCL21 (SLC) produced locally. CXCR3/CCR5 expression onCD56+high
NK-cells permits these cells to migrate into inflamed tissues, together with CCR5+ proinflammatory monocytes, CCR5/CXCR3+Th1 cells,
and CCR5/CXCR3+ cytotoxic T lymphocytes (CTL). CXCR1/CXCR2 expression on CD56+low NK-cells, neutrophils, and CTL permits these
cells to migrate into inflamed tissues in response to CXCL8 (IL-8), where they interact together and with activated macrophages. CD56+ int

NK-cells are transitional NK-cells, whose properties are intermediate between those of CD56+high and CD56+low NK-cells. Dashed arrows
indicate the routes of differentiation. Full arrows indicate the cross-talk between cells mediated by cytokines and chemokines. CCR7 ligands:
CCL-19 (ELC) and CCL21 (SLC); CCR5 ligands: CCL3 (MIP-1𝛼), CCL4 (MIP-1𝛽), CCL5 (RANTES), and CCL8 (MCP-2); CXCR3 ligands:
CXCL9 (MIG), CXCL10 (IP-10), and CXCL11 (I-TAC); CXCL1 ligands: CXCL-8 (IL-8); CXCL2 ligands: CXCL-8 (IL-8) and other ELR motif
containing CXCL chemokine; CXCR4 ligand: CXCL12 (SDF-1); CCR1 ligands: CCL3 (MIP-1𝛼), CCL5 (RANTES), MCP-2, andMCP-3; CCR2
ligands: CCL2 (MCP-1), CCL8 (MCP-2), CCL7 (MCP-3), and CCL13 (MCP-4).

we designed as CD56+ int NK-cells. Similar to CD56+high NK-
cells, most of the CD56+ int NK-cells are KIR− and CD57−;
however, the majority of them display the CD16 molecule,
a marker of CD56+low NK-cells, and they have intermediate
levels of CD62L, CD94, and CD122 expression. Due to the
fact that the identification of the NK-cell populations by
flow cytometry is usually based only on CD56 and CD16
expression, CD56+ int NK-cells are being considered together
with CD56+low NK-cells on routine blood analysis.

The fact that CD56+ int NK-cells have phenotypic features
intermediate between those of conventional CD56+low and

CD56+high NK-cells would suggest that they could represent
a transitional NK-cell maturation stage.

In line with this hypothesis, evidence for the existence
of transitional NK-cell populations with phenotypic fea-
tures similar to those of the CD56+ int NK-cells described
herein has also been provided in other studies [90, 91]. In
accordance, Yu et al. described a CD56+low CD94+high NK-
cell subset expressing CD2, CD62L, CD56, KIR, granzymes,
and perforin, producing IFN-𝛾 in response to monokines,
and exhibiting CD94-mediated redirected killing at levels
intermediate between those observed in CD56+low CD94+low
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and CD56+high CD94+high NK-cells [90]. In addition, Juelke
el al. reported on a CD56+low CD62L+ NK-cell subset
with the ability to produce IFN-𝛾 and the capacity to kill
[91]. Finally, when studying the differentiation of CD56+high

CD94/NKG2A+ into CD56+low CD94/NKG2A− NK-cells,
Béziat et al. found a transitional CD56+low CD94/NKG2A+
NK-cell subset, expressing intermediate levels of CD62L,
granzyme-K, CD27, and CD57, among other molecules [92].
Given the immunophenotypic similarities, the CD56+ int NK-
cell population described herein, which comprises less than
10% of the CD56+ NK-cells in the PB from normal healthy
individuals, probably corresponds to a subpopulation of the
CD56+low CD94+high NK-cell subset described by Yu et al.,
which accounts for half of the circulating CD56+ NK-cells
[90].

Another potential interest of identifying normal NK-
cells with intermediate phenotypic features relies on data
interpretation in clinical settings. For instance, overrepre-
sentation of CD56+ int NK-cells in the PB from patients
with NK-cell lymphocytosis may erroneously be interpreted
as phenotypically aberrant (and thus potentially neoplastic)
NK-cells. Thus, the knowledge about the immunophenotype
of theNK-cell populations that circulate in normal PB, as well
as in the PB from patients with inflammatory and infectious
conditions [93, 94], is essential to a better understanding of
the phenotypic heterogeneity of the expanded NK-cell pop-
ulations observed in patients with CLPD-NK [95], thereby
contributing to distinguishing nonclonal from clonal NK-
cell proliferations and reactive from neoplastic conditions
[96, 97].

5. Conclusions

Differences in the CKR expression on CD56+low and
CD56+high NK-cells may determine their ability to be rec-
ruited into inflamed tissues and colocalize with other cells
at sites of inflammation, which is crucial for the success of
the immune response. In addition, the phenotypic hetero-
geneity of the conventional CD56+low and CD56+high NK-
cellsmay be largely due to the presence of transitionalNK-cell
populations, which may be preferentially expanded in some
pathological conditions.

Further investigations in this area will help to better
understand the terminal differentiation of the NK-cells and
the maturation relationship between the NK-cell subsets,
their circulation through the body, and their participation in
the immune response. In addition, theywill give an important
contribution to establish phenotypic criteria to differentiate
reactive and neoplastic NK-cell proliferations, as well as to
better identify the normal cell counterparts from which the
neoplastic NK-cells originate.
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